Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brian T. Holmes, Clifford W. Padgett and William T. Pennington*

Clemson University, Chemistry Department, H.L. Hunter Research Laboratories, Clemson, SC 29634-0973, USA

Correspondence e-mail: billp@clemson.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.040$
$w R$ factor $=0.116$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-6-bromopyridinium bromide

The title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, crystallizes in the centrosymmetric space group Cmca with all atoms lying on a crystallographic mirror plane at $(0, y, z)$. The ion pairs pack as ribbons through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ halogen interactions. The ribbons are linked through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions to form layers which stack perpendicular to the a axis.

Comment

The title compound, 2-amino-6-bromopyridinium bromide, (1), a precursor for 2-bromo-6-iodopyridine (Holmes et al., 2002), was also of interest to us for comparison of weak N $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding with $\mathrm{Br}^{-} \cdots \mathrm{Br}-\mathrm{C}$ halogen interactions. The conversion of commercially and synthetically abundant amino derivatives to halogens has traditionally been accomplished using Sandmeyer-type conditions and is very useful in organic synthesis (Lavastre et al., 1997; Smith \& Ho, 1990). The salt crystallizes in space group Cmca with all non-H atoms lying on a crystallographic mirror plane at $(0, y, z)$ (Fig. 1). The geometric parameters for (1) are generally comparable to those found in related derivatives, such as 2-bromopyridinium bromide (Freytag \& Jones, 2001), 2-chloro-6-di-methylamino-3,5-pyridinedicarbaldehyde (Lai et al., 1995), 7-amino-5-bromo-4-methyl-2-oxo-1,2,3,4-tetrahydro-1,6-naph-thyridine-8-carbonitrile monohydrate (Gómez de Anderez et al., 1992), and 6-bromo-3,5-difluoro-2-piperidyl-4-(1,2,2,2-tetrafluoro-1-trifluoromethylethyl)pyridine (Chambers et al., 2001), with the expected changes upon protonation at the pyridine N atom. The short $\mathrm{C}-\mathrm{NH}_{2}$ bond length and distortions exhibited in the ring bond distances indicate a substantial delocalization of the lone pair on the amine nitrogen into the π-system of the pyridine ring.

Ion-pairs of (1) form $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonded ribbons with adjacent pairs related by a b-glide operation. There is also a $\mathrm{Br} \cdots \mathrm{Br}$ interaction within the ribbon structure between the bromide anion and the bromine substituent $\left[\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\mathrm{i}}=\right.$ $3.5484(13) \AA$ and $\mathrm{C}-\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\mathrm{i}}=179.43(19)^{\circ}$, where $\mathrm{Br} 2^{\mathrm{i}}$ is related to Br 2 by $\left.\left(x, \frac{1}{2}+y, \frac{1}{2}-z\right)\right]$. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions link the ribbons in the \mathbf{c} direction (Fig. 2). These layers

Received 27 March 2003 Accepted 22 April 2003 Online 23 May 2003

Figure 1
The molecular structure of (1). Displacement ellipsoids are shown at the 50% probability level and H atoms are of arbitrary radii.

Figure 2
Hydrogen-bonded layer of (1). Dashed lines represent $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen-bonds. Filled dashed lines represent $\mathrm{Br} \cdots \mathrm{Br}$ interactions.
stack to complete the structure, with neighboring layers related by C-centering. The packing of (1) is quite similar to that of 2-bromopyridinium bromide (Freytag \& Jones, 2001), with the only significant difference being the alternation of direction of the ribbons in (1) as opposed to the polar nature of the ribbon packing in the simpler analog.

Experimental

2-Amino-6-bromopyridinium bromide was synthesized using a literature method (Johnson et al., 1962), by slowly dissolving 3-hydroxypentanedinitrile in a $33 \mathrm{wt} \%$ solution of hydrogen bromide in glacial acetic acid with cooling and stirring. The resultant dark yellow precipitate was removed by filtration and allowed to air dry, affording a quantitative yield of the desired product. Diffraction quality crystals of 2-amino-6-bromopyridinium bromide were
obtained by slow evaporation of an ethanol solution at room temperature.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=253.94$
Orthorhombic, Cmca
$a=6.9230$ (10) \AA
$b=11.616$ (2) A
$c=19.413$ (4) \AA
$V=1561.1(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.5-25.0^{\circ}$
$\mu=10.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, brown
$0.24 \times 0.21 \times 0.12 \mathrm{~mm}$
$D_{x}=2.161 \mathrm{Mg} \mathrm{m}^{-3}$

580 reflections with $I>2 \sigma(I)$
Rigaku AFC-7 diffractometer
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 13$
$l=0 \rightarrow 23$
3 standard reflections every 100 reflections intensity decay: 1%
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0873 P)^{2}\right.$

$$
+0.9155 P]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.81 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0020 (4)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$1.876(8)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.402(12)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.336(10)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.346(11)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.341(8)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.406(9)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.320(9)$	$\mathrm{Br} 1-\mathrm{Br} 2^{\mathrm{i}}$	$3.5484(13)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.331(10)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$123.5(6)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.7(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.1(7)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$	$119.9(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$122.7(6)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$123.2(7)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Br} 1$	$116.2(5)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$116.9(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.6(7)$	$\mathrm{C} 1-\mathrm{Br} 1-\mathrm{Br} 2^{\mathrm{i}}$	$179.43(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.1(7)$		

Symmetry code: (i) $x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 3 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.90	2.70	$3.486(7)$	146
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.90	2.53	$3.431(7)$	180
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{2}$	0.86	2.55	$3.360(5)$	158
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.93	3.00	$3.923(8)$	174
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Br}^{\mathrm{iv}^{\mathrm{iv}}}$	0.93	3.04	$3.864(7)$	149

Symmetry codes: (ii) $x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $-x, 1-y, 1-z$; (iv) $-x, \frac{1}{2}-y, \frac{1}{2}+z$.

Data collection: AFC-7 Diffractometer Control Software (Molecular Structure Corporation/Rigaku, 1997); cell refinement: AFC-7 Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation/Rigaku, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The National Science Foundation is gratefully acknowledged for support of this work (CHE-0203402) and for purchase of the X-ray system used in this study (CHE9207230).

References

Chambers, R. D., Hoskin, P. R., Sandford, G., Yufit, D. S. \& Howard, J. A. K. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2788-2795.

Gómez de Anderez, D., Helliwell, J. R., Dodson, E. J., Piniella, J. F., Germain, G., Alvarez-Larena, A., Teixido, J. \& Victory, P. (1992). Acta Cryst. C48, 104-106.
Freytag, M. \& Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889-896.

Holmes, B. T., Pennington, W. T. \& Hanks, T. W. (2002). Molecules, 7, 447455.

Johnson, F., Panella, J. P., Carlson, A. A. \& Hunneman, D. H. (1962). J. Org. Chem. 27, 2473-2478.
Lai, L.-L., Liu, L.-K., Shiao, M.-J. \& Wen, Y.-S. (1995). Acta Cryst. C51, 517519.

Lavastre, O., Cabioch, S., Dixneuf, P. H. \& Vohlidal, J. (1997). Tetrahedron, 53, 7595-7604.
Molecular Structure Corporation/Rigaku (1997). TEXSAN and AFC-7 Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (2000). SHELXTL-Plus. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Smith, W. B. \& Ho, O. C. (1990). J. Org. Chem. 55, 2543-2545.

